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We investigate from basic principles of nonequilibrium statistical mechanics the general reasons why elec-
tron transfer across an interface is associated with irreversible elements �resistances� in equivalent circuit
modeling. We apply the detailed fluctuation theorem �C. Jarzynski, J. Stat. Phys. 98, 77 �2000�� to a simple
model of an interface between two different materials. The elementary transition rates are interpreted in terms
of the evolution of a microstate, and obey a ratio that is related to the heat absorbed from the phonon bath
while promoting an electron to a higher energy level. The amount of irreversibility �the entropy production�,
and also the macroscopic current density, can be both obtained with the additional constraint that the system
belongs in a particular mesostate, determined by the distribution of chemical and electrostatic potential.
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I. INTRODUCTION

Interfacial charge transfer occurs in many electrochemical
systems and solid state electronic devices. Electrical current
is obtained in these systems because either electron or ion
transfer is induced at the interfaces between the materials
when the device is biased by external potential. In the inves-
tigation of these systems by impedance spectroscopy, it is
found that most of the devices can be represented by equiva-
lent circuits consisting on certain combinations of resistances
and capacitors �1,2�. The capacitors are reversible elements
that represent energy storage in the system, either as electro-
static polarization or as chemical energy accumulation �3�.
On another hand, the resistance is a dissipative element that
consumes the energy supplied by the external power source.

The aim of this paper is to understand the origin of the
irreversibility associated to current flow in a biased device,
in relation to the elementary charge transfer events. Follow-
ing a long tradition in physics education, one often tends to
view a potentiostat as a device that creates a difference of
electrostatic potential between the leads. In addition, a
charge transfer process is usually viewed as the event of
crossing a potential energy barrier at the interface between
two materials. However, the displacement of an electron over
electrostatic energy differences is a conservative �reversible�
process, and in this view the origin of irreversibility is far
from clear. In fact the “voltage” between the leads is the
difference of electrochemical potential of electrons �4,5�,
which creates steps or gradients of quasi-Fermi-level into the
device. �Nonequilibrium electrochemical potentials are often
denoted quasi-Fermi-levels. The same quantity is denoted the
redox potential for species in solution �6�.� Explaining the
intrinsic irreversibility of charge transfer requires to consider
in addition to energy changes the entropy changes of the
electrons and of the thermal bath in a far from equilibrium
situation.

As a suitable tool for this analysis we will consider the
fluctuation theorem for dissipative systems, that refers col-

lectively to a number of results of nonequilibrium statistical
mechanics that are valid far from thermal equilibrium �7–9�.
The steady state version of the fluctuation theorem can be
written as

lim
�→�

p��+ �̄�
p��− �̄�

= exp� �̄�

kB
� �1�

where p���̄� is the probability distribution of observing an
average entropy production rate �̄ over a time interval �. The
distribution is defined with respect to an ensemble of trajec-
tory segments of duration �, sampled while the system in
question evolves in a nonequilibrium steady state. Relevant
to the present work are the applications of the fluctuation
theorem for the entropy of mixing �10� and for chemical
reaction �11�.

We will carry out a discussion using a very simple model
that contains the main physical characteristics of a broad
family of charge transfer mechanisms. The model is sketched
in Fig. 1, and it consists of a contact between two different
materials, as indicated by the different energy levels in each
phase, Ei, that stand for the electron affinities of the materials
when they have achieved equilibrium after having been con-
tacted, Fig. 1�a� �12�. The difference of work functions be-
tween the materials creates an energy barrier at the interface,
the structure of which is not indicated in detail in Fig. 1, as
we only need the energy difference between the phases for
the following developments. Electrochemical potential in
each of the two phases is controlled by the metal contacs,
whose Fermi levels EFA and EFB can be manipulated exter-
nally. The current corresponds to the directional increase of
electronic transitions across the interface, when the device is
biased by a potential V. We restrict our attention mainly to
electronic systems, but ionic charge transfer can be treated
similarly.

Let us consider some common features of phenomeno-
logical models. For example, charge transfer kinetics in elec-
trochemistry generally obeys, at least approximately, an ex-
ponential activation law �Tafel’s law� for the relationship*Email address: bisquert@uji.es
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between the Faradaic current density and the potential �13�.
In terms of the electron flux J, we express this relation as

J = J0�e−qV/kBT − 1� . �2�

Here q is the elementary positive charge, kB is Boltz-
mann’s constant, T is the temperature, and the current in-
creases at negative bias. The term −1 ensures that the current
is zero in the absence of applied bias, as required in equilib-
rium when the same flux J0 exists in both directions �the
so-called exchange current�. Equation �2� stands also for the
current vs. potential in a metal-semiconductor �Schottky� di-
ode �14�.

In a sense, once some reasonable phenomenological
model such as Eq. �2� is accepted for the current-potential
dependence, the irreversibility is already demonstrated be-
cause the flux will follow the direction of the driving force
and the production of entropy will be positive �15�. From any
expression as Eq. �2�, one obtains the charge transfer resis-
tance, which is the reciprocal of the infinitessimal variation
of current with respect to voltage, Rct= �dV /d�qJ��−1, and
which represents the irreversibility in an equivalent circuit
model �2�. A widely used method to justify the phenomeno-
logical expressions for charge transfer such as Eq. �2� is the
master equation, which can be written

dxi

dt
= �

j

wjixj − wijxi, �3�

where xi represents a normalized concentration of species in
the phase i, and wij are the transition rates from phase i to j.
Transition rates are usually required to satisfy detailed bal-
ance, which is the condition that fluxes between different
phases must be compensated at equilibrium, implying that
the ratio of the probability of a process and the reversed one
is the Boltzmann factor of the energy cost. It is required to
further assume that the transition rates maintain the form that
they have at equilibrium.

The main disadvantage of this approach, for explaining
the sources of irreversibility, is that Eq. �3� combines the
statistical distribution of carriers in available states and indi-
vidual transition rates, which obscures the origin of the con-
tributions to positive entropy production. One goal of this
paper is to formulate the macroscopic flux equation without
postulating a dynamic equation from the equilibrium distri-
bution. The main tool in our derivation is the detailed fluc-
tuation theorem �DFT� derived by Jarzynski �16�, which con-
nects the probabilities of an initial and final microstate of the
system through a function of the entropy change. We will
also need to determine how the probability of a single charge
transfer event is governed by the macroscopic variables, i.e.,
the temperature and the Fermi levels of the contacts, describ-
ing, respectively, heat and particle reservoirs that exert an
influence over the system. The evolution of microstates must
be subjected to the further conditioning that these mi-
crostates belong to a particular mesostate. The influence of
such prior conditioning in relationhips between transition
rates is discussed by Gillespie �17� in connection to the fun-
damental postulate of statistical mechanics and we use here a
similar argument.

In the following, we analyze the system of Fig. 1 consid-
ering the electron distributions in phase 1 and 2, at both
microstate and mesostate levels, in order to find the prob-
abilities of transitions and the different entropy contributions
to the electron flux. Thereafter we discuss the significance
and interpretation of the results.

II. MICROSCOPIC AND MESOSCOPIC DESCRIPTIONS
OF ELECTRON TRANSFER RATES

For concreteness we consider each phase i=1,2 in Fig. 1
as composed of a collection of discrete electronic sites, such
as in hopping transport through band gap states �traps� in an
amorphous semiconductor �18� or in organic conductors
�19�. The electrons can move between the different sites in
one of the phases and effect as well transitions from one
phase to another one, which is interpreted as the interfacial
charge transfer event. We assume that the only allowed tran-
sitions are those between neighbor sites. The statistical de-
scription of this system and the corresponding dynamic tran-
sitions can be considered at different levels. The most basic
level is a full quantum mechanical description of all the elec-
tronic states in the system and the corresponding hamiltonian
evolution. This basic description requires to consider the in-
teraction between neigbour sites as well as the coupling to
the thermal bath �phonons�.

FIG. 1. Scheme of a device formed by two materials in contact,
with energies E1 and E2 and electrochemical potentials �̄1 and �̄2.
The two phases are separately contacted by reversible metal con-
tacts �shaded areas� with Fermi levels EFA and EFB. The vertical
axis represents electron energy, and superscript 0 indicates equilib-
rium values. �a� Equilibrium. In the lower diagrams the system is
biased negatively �potential V� at contact A, causing �b� an increase
of the chemical potential in phase 1 or �c� an increase of the energy
level E1.
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The former detailed description is, however, very often
beyond our reach, both for experimental and for numerical
model simulation methods, for most macroscopic as well as
mesoscopic systems involving charge transfer. At the next
level of description, which is quite convenient for numerical
modeling of carrier transport �20�, we consider the discrete
electronic sites with total number Ni in phase i, which can be
either singly occupied or empty, i.e., the electrons form a
lattice gas, as indicated in the scheme of Fig. 2. The mi-
crostate of the system is defined by specifying the occupancy
of the sites. If the number of electrons in phase i is ni, the
number of microstates in phase i is

�Ni
�ni� =

Ni!

�Ni − ni�!ni!
. �4�

We are mainly interested in analyzing the electronic tran-
sitions across the interface. Let us assume that the number of
sites where interfacial transitions are possible is NI, as indi-
cated in Fig. 2. Let Y�js1� denote a microstate with an elec-
tron in interfacial site js at side 1 of the interface, and with-
out an electron in site js at side 2 of the interface, with js
=1, . . . ,NI. We will let Y�js2� represent the same microstate
as Y�js1� but with site js at side 1 of the interface being
empty, and the conjugate interfacial site js at side 2 of the
interface being occupied by an electron. Note that the mi-
crostates Y�js1� and Y�js2� are not subjected to any other
restrictions about the distribution of electrons in the rest of
lattice sites. The charge transfer event is a change of the
microstate Y�js1�→Y�js2� which we may abbreviate as js1

→ js2. The probability of an interfacial charge transfer event
between the neighbor sites js, in the unit of time �t, will be
written

P+�Y�js1�;Y�js2�� . �5�

The probability of the reverse process js2→ js1 in the unit of
time will be

P−�Y�js2�;Y�js1�� , �6�

and it will be assumed that the downward transition occurs
with a frequency �0,

P−�Y�js2�;Y�js1�� = �0. �7�

The detailed fluctuation theorem derived by Jarzynski
�16� �see also �21�� connects an initial and final microstate of
a system of interest, through the expression

P+�Z�, + �Sb;Z	�
P−�Z	

* ,− �Sb;Z�
*�

= e�Sb/kB �8�

where Z� and Z	 denote the initial and final microstates of
the system of interest, and the asterisk denotes the reversal of
the trajectory. The definition of the entropy change �Sb in
the transition Z�→Z	 is an important element in the DFT.
The entropy of a macroscopic system in a macrostate M is
normally defined as the logarithm of the volume of phase
space �number of microstates� when M specifies the locally
conserved quantities of the system in thermal equilibrium,
but there is no generally accepted definition of entropy far
from equilibrium �22�. Equation �4� applies also for systems
not in thermal equilibrium and requires a proper choice of
the entropy change. Jarzynski �16� introduces in Eq. �4� the
entropy generated over the course of the process, which
means the quantity

�Sb = −
Q

T
�9�

where Q denotes the net heat absorbed by the system from
the thermal bath, over the course of the process. Hence we
have included the subscript b in Eq. �9�, in order to distin-
guish it from the change of entropy in the system of interest
in the transition Z�→Z	, �Ss.

Applying the DFT, Eq. �8�, to the processes of Eqs. �5�
and �6� that connect initial and final microstates, we obtain

P+�Y�js1�;Y�js2��
P−�Y�js2�;Y�js1��

= e�12Sb/kBT. �10�

For the sake of brevity we have omitted in Eq. �10� the
entropy term in the argument of the probabilities as stated
explicitly in Eq. �8�. The symbol �12 indicates the change in
the process js1→ js2.

In a transition js1→ js2 the electron gains an energy cor-
responding to the difference of the electron affinities of the
materials, E2−E1. This energy is absorbed as heat from the
thermal bath �the phonons in the materials �23��, so that Eq.
�9� gives

�12Sb = −
E2 − E1

T
�11�

As a particular example of this kind of process �known
since one century ago� the absorption of heat in upward elec-
tronic transitions is observed directly in the cooling of the
cathode during thermoionic emission of electrons to the
vacuum �24�. In this case the energy level E2 in the diagram
of Fig. 1�a� corresponds to the vacuum level, and the energy
level E1 is the work function of the cathode.

Note that the time constant �0 in Eq. �7� is actually de-
pendent on the height of the energy barrier seen from side 2
of the interface �not shown in Fig. 1�. For example, assuming
a barrier of height E0 at the interface, we would obtain an
activation energy Eact2=E0−E2 for the electron hopping from
phase 2, and �0=
0e−�E0−E1�/kBT, where 
0 is an attempt-to-

FIG. 2. Scheme of a device formed by two materials in contact.
The materials are represented by lattices of discrete sites for elec-
trons. The interface between the materials consists on NI=6 sites
�shaded� at each side, across which interfacial charge transfer is
possible.
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hop frequency. However, deriving the form of �0 as in this
example requires some specific model for materials and in-
terfacial properties that will not be considered in this paper.
Therefore here we are concerned only with the energy differ-
ence across the interface, Eq. �11�, which can be viewed as a
difference of activation energies, E2−E1=Eact1−Eact2, in the
models of barrier crossing.

Using Eqs. �9� and �11�, Eq. �10� implies the following:

P+�Y�js1�;Y�js2�� = �0e−�E2−E1�/kBT. �12�

The description at the level of microstates and the DFT
has provided an important relationship between the basic
transition rates in the forward and backward directions across
the interface. However, in the experimental measurements on
interfacial charge transfer, the extent to which we can deter-
mine the state of the system is not at the microstate level,
rather, as discussed in the Introduction, in the normal situa-
tions we can control only the electrochemical potential of
each phase by means of the external contacts and a power
source. In addition, we will assume that the electron transfer
process between identical molecules is much faster than that
across the interface, so that the latter process is the step
determining the electron flux between the electrodes. In other
words, we neglect the diffusion in each phase, and assume
that electrons in each phase remain in a state of internal
equilibrium. Therefore we employ a third level of descrip-
tion, the mesoscopic level, in which each phase is specified
only by a number of electrons, which are randomly distrib-
uted in the lattice sites �including the interfacial sites�.

Let X�n1 ,n2� denote a mesostate in which the number of
electrons in the phases are n1 and n2. Such a mesostate is
characterized by equilibrium quantities for each electronic
subsystem, such as the entropy and the chemical potential.
The electronic system as a whole may or may not be at
equilibrium, a question that we consider in Sec. III.

If the number of electrons in phase i is ni, the configura-
tional entropy of the electronic subsystem is given by

Ssi = kB ln��Ni
�ni�� . �13�

Let us assume for simplicity that ni� �Ni, i.e., the elec-
trons form a very dilute solution in a background of vacant
sites, so that we can neglect the restrictions due to occupancy
of the acceptor site in an electron hop. Assuming also that Ni
and ni are sufficiently large, and applying the Stirling ap-
proximation, we obtain

Ssi = − kBni ln� ni

Ni
� . �14�

The free energy of one phase is

Fi = niEi − TSsi �15�

and the electrochemical potential �̄i=�Fi /�ni has the expres-
sion

�̄i = Ei + �i �16�

where

�i = − T
�Ssi

�ni
= kBT ln� ni

Ni
� �17�

is the chemical potential of the electrons. Note in Fig. 1 that
the chemical potential is given in each case by the distance
between the electrochemical potential and the energy level.
The change of entropy in the electron subsystems when one
electron is removed �this process is denoted by subscript r� is

�rSsi = −
�Ssi

�ni
=

�i

T
. �18�

The total change of configurational entropy in the electron
distributions when one electron is transfered from phase 1 to
phase 2 is

�12Ss = �rSs1 − �rSs2 =
�1 − �2

T
. �19�

From the mesoscopic �and experimental� point of view
the main quantity that we must consider is the total rate of
transitions across the interface, subjected to the condition
that the two phases are kept at given mesostates determined
by fixed electrochemical potentials. Observe that the number
of electrons in the mesostate X�n1 ,n2� can fluctuate around
n1 and n2, the fluctuations being given by the chemical ca-
pacitance, ���ni�2	=kBT�dni /d�i� �3,25�. The elementary
transitions between microstates, Y�js1� and Y�js2�, discussed
before, must be subjected to the further conditioning that
these microstates belong to a particular mesostate �17�. We
define Y�js1 ,n1 ,n2� as a microstate Y�js1��X�n1 ,n2�. Simi-
larly we define Y�js2 ,n1 ,n2�, as a microstate Y�js2�
�X�n1 ,n2�. We consider the probability of a transition

P+„Y�js1,n1,n2�;Y�js2,n1 − 1,n2 + 1�… �20�

between t and t+�t. Equation �20� corresponds to the con-
ditioned probability

Prob
js1 → js2in�t,t + �t��Y�js1,t� � X�n1,n2�� �21�

which can be evaluated as the product

P+„Y�js1,t�;Y�js2,t + �t�…Prob�Y�js1,t��Y�js1,t� � X�n1,n2�� .

�22�

The first factor of Eq. �22� is the transition pathway be-
tween microstates considered above with the result in Eq.
�12�. The second factor in Eq. �22� corresponds of the num-
ber of configurations in which one electron electron is in site
js, with respect to the total number of configurations with n1
electrons in subsystem 1. Hence

Prob�Y�js1,t��Y�js1,t� � X�n1,n2�� =
�N1−1�n1 − 1�

�N1
�n1�

.

�23�

With the definition of entropy, we can write

�N1−1�n1 − 1�

�N1
�n1�

= e�S1�N1−1,n1−1�−S1�N1,n1��/kB. �24�
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Therefore, in terms of the entropy for the removal of one
electron from subsystem 1, given in Eq. �18�, we have

Prob�Y�js1,t��Y�js1,t� � X�n1,n2�� = e�rSs1/kB. �25�

From Eq. �25� and the similar expression for subsytem 2,
we obtain using Eq. �19� the result

Prob�Y�js1,t��Y�js1,t� � X�n1,n2��
Prob�Y�js2,t��Y�js1,t� � X�n1 − 1,n2 + 1��

= e�12Ss/kB

�26�

which relates the probabilities of occurrence of the mi-
crostates that are time reverses of each other with respect to
the charge transfer event, conditioned to a given macrostate.
Similar relationships have been discussed recently �21,26�.

Summarizing, we have found for the conditioned transi-
tion probabilities that

P+„Y�js1,n1,n2�;Y�js2,n1 − 1,n2 + 1�…

= �0e−�E2−E1�/kBTe+�rSs1/kB �27�

and

P−„Y�js2,n1 − 1,n2 + 1�;Y�js1,n1,n2�… = �0e+�rSs2/kB.

�28�

The flux in each direction across the interface is given by
the addition of all the interfacial transitions. The forward flux
is

J+ = �
js=1

NI

P+„Y�js1,n1,n2�;Y�js2,n1 − 1,n2 + 1�…

= NI�0e−�E2−E1�/kBTe+�rSs1/kB �29�

and the backward flux gives

J− = �
js=1

NI

P−„Y�js2,n1 − 1,n2 + 1�;Y�js1,n1 − 1,n2 + 1�…

= NI�0e+�rSs2/kB. �30�

The total flux

J = J+ − J− �31�

is given by the expression

J = NI�0�e−�E2−E1�/kBT+�rSs1/kB − e+�rSs2/kB� . �32�

In Eq. �32� it is appreciated that the reduction to the me-
soscopic level introduces the terms of activation entropy, re-
lated to the number of configurations that contribute to the
flux, in addition to the contribution of activation energies
�E2−E1�, which was described in terms of the DFT.

Let us state Eq. �32� in terms of a familiar expression. If
we consider the ideal statistics of electrons, applying Eq. �4�
we get

�N1−1�n1 − 1�

�N1
�n1�

=
n1

N1
. �33�

Consequently, Eqs. �27� and �28� take the form

P+„Y�js1,n1,n2�;Y�js2,n1 − 1,n2 + 1�… = �0e−�E2−E1�/kBT n1

N1
,

�34�

P−„Y�js2,n1 − 1,n2 + 1�;Y�js1,n1 − 1,n2 + 1�… = �0
n2

N2
,

�35�

so that the flux can be written as the standard expression

J = NI�0� n1

N1
e−�E2−E1�/kBT −

n2

N2
� . �36�

III. ELECTRON TRANSFER IN EQUILIBRIUM

We remark that the only hypothesis used so far is the
internal equilibrium of each electronic subsystem, so that Eq.
�32� is valid for an arbitrary bias potential. The condition of
thermal equilibrium between the two phases is determined
by the minimization of the total free energy F=F1+F2, with
respect to the number of electrons, implying equality of the
electrochemical potentials of the separate phases,

�̄1 = �̄2 �37�

as indicated in Fig. 1�a�. Equation �37� may be expressed as

�12Stotal = 0 �38�

where

�12Stotal = �12Sb + �12Ss, �39�

i.e., according to Eq. �38� the total entropy production in the
process of transferring one electron is zero, as required in
thermal equilibrium. In equilibrium the transition to higher
energy requires a negative entropy in the thermal bath, which
is compensated by the increase of entropy gained in transfer-
ring the electrons from a high to a low density region ��1


�2�. Equation �39� can be viewed as the familiar expres-
sion of chemical equilibrium with the reaction energy �en-
thalpy� given in Eq. �11� and the entropy change from reac-
tans to products stated in Eq. �19�. In fact our model can be
easily adapted to represent the rate of a redox reaction far
from equilibrium, for which Eq. �2� is usually a good ap-
proximation.

It follows from Eq. �38� that the flux in Eq. �32� is zero
when the two electronic subsystems are in a state of equilib-
rium, as required by thermodynamics. Denoting overall equi-
librium quantities by superscript zero, the exchange flux, i.e.,
the flux in each direction in equilibrium, is given by

J0 = NI�0e−�E2
0−E1

0�/kBT+�rSs1
0 /kB = NI�0e+�rSs2

0 /kB. �40�

IV. ELECTRON TRANSFER IN NONEQUILIBRIUM
CONDITIONS

When the system is driven away from the condition of
equilibrium described in the previous section, there occur
changes of the electrochemical potentials of the electrons.
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We will assume that only the phase 1 is modified when the
system is biased, so that

�̄1 = �̄1
0 − qV �41�

while �̄2= �̄2
0. This restriction will simplify the discussion

without affecting the general conclusions. In Eq. �41�, V is
the potential applied to the left electrode with respect to the
right one, which determines the relative position of Fermi
levels in the contacts as �5�

EFA − EFB
0 = − qV . �42�

To be precise, the term contact refers to any structure
which allows carriers to move from a metastable energy
�where they are described by a quasi-Fermi-level, i.e., in a
semiconductor� to a stable energy level �where average en-
ergy for the carrier is nearly equal to the equilibrium Fermi
level, i.e., in a metal� �27�. Furthermore we have assumed
ideally reversible contacts �28�, in which the quasi-Fermi-
level is continuous between the metal and the semiconductor
material. These definitions, which in practice are often real-
ized with Ohmic contacts �29�, allow us to assume that each
phase is separately maintained in quasiequilibrium, because
the contacts replenish or remove the defect or excess of car-
riers due to the interfacial transitions.

Using the exchange flux defined in Eq. �40�, Eq. �32� can
be written

J = J0�e�12Stotal − 1� . �43�

This last result reduces to the well known diode equation
in Eq. �2�, as discussed in the following, but Eq. �43� dis-
plays explicitly the elements of entropy change, both micro-
scopic ��12Sb� and mesoscopic ��12Ss�, in the charge transfer
process. The macroscopic current occurs when these entropy
contributions remain unbalanced by external influence on the
system. The electron flux from phase 1 to phase 2 will be
enhanced exponentially when the bias is such that �12Stotal is
positive, otherwise the forward flux will be suppressed and
there will remain only the backward equilibrium flux,
J=−J0 �the reverse saturation current in the diode�.

Let us examine in more detail the conditions in which
�12Stotal is positive. The modification of electrochemical po-
tential in phase 1 may take place in different fashions.

�1� By a change of the chemical potential, ��̄1=��1. In
this case the energy levels Ei remain stationary, and the bias
produces a change of the concentration in phase 1, as shown
in Fig. 1�b�. This case is pertinent when material 1 effec-
tively shields macroscopic electrical fields, by the presence
of additional inert species with a high conductivity. This oc-
curs in a wide class of materials generally known as electro-
active materials, which precisely have the ability to change
markedly the composition as a function of the potential with
consequent modification of physical properties that can be
used in devices for desired applications. Some examples are
intercalation materials applied in Li-ion batteries �30� �in this
case the transference across the interface is ionic� and nano-
structured semiconductor electrodes used in dye-sensitized
solar cells �31�.

�2� By a change of the energy level, ��̄1=�E1, shown in
Fig. 1�c�. This occurs when the potential V is unshielded in

material 1, so that the applied potential drop takes place at
the interface between the two materials and modifies the en-
ergy difference across the interfacial barrier. An example is
the classical model of Fröhlich for hopping in a two-level
system �32�.

�3� By a combination of both.
Next we will treat these cases separately
If the negative bias at the left electrode increases the

chemical potential in phase 1, as indicated in Fig. 1�b�, then
the electrochemical potential will be

�̄1 = E1
0 − kBT ln� n1

N1
� �44�

and with Eq. �41�, we can express the number of electrons as

n1 = e−qV/kBTn1
0. �45�

Since the energy levels have not been modified the de-
crease of entropy in the phonon bath will be the same as in
Eq. �11�. However the change of entropy in the electronic
subsystem 1, Eq. �18�, takes the value

�rSs1 = kB ln� n1

N1
� = �rSs1

0 −
qV

kBT
. �46�

The total entropy change in the transfer of one electron is

�12Sb
0 + �12Ss = −

qV

kBT
. �47�

The calculation of the entropy production in Eq. �47�
shows an excess entropy determined by the free energy per
electron, that is given by the difference of Fermi level be-
tween the contacts, Eq. �42�. This excess entropy is caused
by the additional concentration in phase 1, which increases
the entropy cost for localizing the electrons in phase 1, as
further discussed in Sec. V. In this case Eq. �43� can be
written

J = J0�e��1−�1
0�/kBT − 1� . �48�

A system showing a current of this type, governed by the
change of chemical potential, can be termed a chemical di-
ode. It is interesting to observe that Eq. �48� describes the
fundamental operation of solar cells in the dark �31�.

Next we discuss the case, indicated in Fig. 1�c�, in which
biasing the system changes the energy difference in the two
phases without modifying their concentrations, ��̄1=�E1.
This model can be termed a barrier diode. The electrochemi-
cal potential is

�̄1 = E1 − kBT ln� n1
0

N1
� �49�

where

E1 = E1
0 − qV . �50�

The change of the entropy of the thermal bath in the trans-
ference of one electron is
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�12Sb = −
E2

0 − E1

T
= �12Sb

0 −
qV

T
, �51�

while the entropy change of the electronic subsystems is not
modified. The total entropy production in the transfer of one
electron

�12Sb + �12Ss
0 = −

qV

kBT
�52�

is the same as in the previous case, Eq. �47�.
We remark that in both cases considered, Eq. �47� and

�52�, �12Stotal will be positive, and consequently the forward
flux of electrons in Eq. �43� will increase, when the bias
potential is negative. Considering the general case in which
the electrochemical potential of subsystem 1 may be modi-
fied either by the chemical potential or energy level of this
subsystem, we can write Eq. �43� as

J = J0�e��̄1−�̄1
0�/kBT − 1� �53�

which is equivalent to Eq. �2�.

V. DISCUSSION AND PHYSICAL APPLICATIONS

In the previous sections we have explained the origin of
the exponential activation of the interfacial current at for-
ward bias usually found in electrochemistry and solid-state
electronics. Our approach considers two separate electronic
subsystems, each one at internal quasiequilibrium fixed by
the Fermi level at the respective contact. The probabilities of
fluctuations that realize the nonequilibrium step, involving
the electronic transitions from one phase to another one, are
described by the DFT �16�. The theorem relates the probabil-
ity of a particular path of microstates to its time reverse, and
reflects a principle of microscopic reversibility. These prob-
abilities, Eqs. �7� and �12�, are affected only by the local
energy levels �determining the change of entropy in the heat
bath�, independently of the electronic state of the rest of the
materials.

In contrast to this, the usual arguments for deriving far
from equilibrium flux equations involving the master equa-
tion and detailed balance take the macroscopic flux as the
starting point for statements about the microscopic quanti-
ties, i.e., the transition rates. This is because detailed balance
refers to the probabilities of changing states without refer-
ence to a particular path �33�. The rate of elementary transi-
tions are derived from the statistical properties of ensembles
of particles that effect such transitions. Reservations about
such procedure have been remarked recently �34�.

In the application of the DFT to our model we have seen
that this theorem accounts for the activation energy �E2

−E1� in the flux of Eq. �32�. The further requirement that the
electrons distributions in the device belong in a given class
of mesostates �17�, introduces the terms �rSsi in Eq. �32�.
These terms are strongly reminiscent of the activation en-
tropy defined in transition state theory �TST� �35�. Note,
however, that TST makes the assumption of an “activated

complex” which consists of the carriers at the top of the
barrier, which are supposed in equilibrium with the carriers
in relaxed states. In the framework of our model the activa-
tion entropy obtains a simple interpretation related to the
mesoscopic restriction in our system, i.e., the role of the
activated complex in TST is taken by one subclass of mi-
crostates, those with an electron at the interface, among the
relaxed states of each phase. Our form of the activation en-
tropy corresponds to the entropy change for taking an elec-
tron from the available sites in material 1 and placing it in
the exact site where it may effect a transition. Indeed, the
change of configurations from n1 electrons distributed in N1
sites, to 1 electron in 1 specific interfacial site, the latter
entropy evidently being zero, is �actSs1=−�rSs1. A similar
concept of a change of configurational entropy is used in
computations of rate constants for intramolecular chemical
reaction �36�: the difference between all accessible ground
state conformers and a single ground state conformer resem-
bling the transition state.

The understanding of the structure of electron flux may be
useful in the modeling of many problems of electron trans-
port and charge transfer that involve a mesoscopic reduction
of certain degrees of freedom. Such reduction is quite com-
mon in systems with a large extent of structural or energy
disorder. In the modeling, carriers can be considered quasi-
free in spatial domains surrounded by the high barriers that
provide the foremost kinetic limitation in the dynamics. Ap-
plying our model to these situations, it is appreciated that the
mesoscopic flux contains exponential contributions of the en-
tropy of quasifree carriers in the confinement domains. Such
entropic contributions have been suggested in recent models
of diffusion in glass former materials �37� and for ion con-
duction in glasses �38�. Further consideration of these topics
is reserved for future work. An extended discussion of en-
tropy contributions in mesoscopic modeling of dynamical
systems has been presented recently �21�.

VI. CONCLUSIONS

The detailed fluctuation theorem allows us to understand
the process of interfacial electron transfer starting from the
probability of a transition between microstates with electrons
localized in the interfacial sites. Further specificacion of the
thermodynamic variables of the mesoscopic phases with qua-
sifree carriers allows to determine the macroscopic flux. The
origin of the net entropy production per electron transfered
�determined by the voltage across the device� lies either in
the heat absorbed from the thermal bath for promoting an
upward transition in the energy axis or in the changes of
configurational entropy of the electronic system itself, de-
pending on the particular effect of the external bias on the
system.
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